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We examine a normal compression shock in an aerosol, of which one phase is a viscous gas and the other
consists of solid particles. We study the continuous solution with account for force interaction between the phases.
Several versions are calculated numerically for the isothermal and isentropic approximations.

The Rakhmatulin equations [1] are used to describe the process.

An examination of strong disturbances in an n-component medium using the Rakhmatulin equations was made in
[2], where the discontinuous solution was inveéstigated.

We consider the continuous solution for a medium with known interaction law between the components; the
equations of motion are transformed correspondingly. For an analogous medium the piston and rarefaction-wave
problems were solved in [3]. Therein the solution was obtained by the method of characteristics for low-intensity
disturbances for Stokes'-law interaction between the particles and the gas.

In contrast with [3], in the present study the force interaction is taken in more general form with use of the
resistance coefficient ¢y, which makes it possible to examine the process for both small and large relative velocities.

The study is made in a coordinate system fixed with the compression shock front.

The Rakhmatulin equations in the one-dimensional case have the form [1]
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When using equations of this type to study different media, in each particular case we must concretize the
transformation Inws and the force interaction laws.

Assuming that the principles of continuum mechanics are valid for the aerosol and that the particles are
spherical, and considering the magnitude of the interaction force from the gas to be a function of the relative velocity
squared, then for the motion without mutual transformations of the components and with account for the gas viscosity
we have '
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The derivation of the equations is not presented, since this would be a repetition of the basic aspects of [1].

The resistance coefficient ck is a function of the Reynolds number, and the subscripts 1 and 2 denote the gas
and solid phase, respectively. Interaction of the particles with one another is assumed to be negligible.
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Equations (2) are used to study the compression shock of constant intensity (with constant parameters ahead of
the shock); the equations are rewritten for the stationary case in a coordinate system fixed with the shock front:
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In the case of motion of a gas without particles, even with a shock wave amplitude which varies with time, the
behavior and structure of the shock front can be described for any instant with the aid of steady-state theory.

This is possible because over time intervals small in comparison with the over-all time scale of the gasdynamic
process but longer than the time At for the front to travel a distance on the order of its width Ax the entire
distribution pattern of the quantities in the wave front propagates through the gas in "frozen" form as a whole [4, 5].

For the medium considered in the present study with its own sort of macroscopic-scale relaxation, the use of
steady-state theory to study unsieady processes is limited. In this case the acceptable rate of change of the
parameters ahead of the front can be estimated directly from the solution of (3) after determining the magnitude of the
relaxation zone.

Thus, we examine the case of small volumetric content of the suspended particles, i.e., py/p 1i ~ 1. With account
for this, after partial integration (3) takes the form
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For further transformations of (4) it is advisable to introduce the dimensionless quantities
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In the present study the primary question is force interaction of the phases, and therefore in evaluating the order
of magnitudes and examining the qualitative aspect in the energetics of the process it is sufficient to limit ourselves
to certain approximations.

As these approximations we use the isothermal (u = const, p = p°p1/pi’) and isentropic (the Poisson adiabat for the
gaseous phase with thermally isolated particles) assumptions.

In the isothermal case with account for the adopted notations, we write (4) after simple transformations as
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The isentropic case differs formally from the isothermal case in that in the first equation of (5) the third term
in the parentheses takes the form Ej/Uf and R’ = var.

For simplicity we assume that the phase velocities are the same at the initial time. Then to describe the
compression shock we must combine with (5) the boundary conditions, which express the absence of gradients ahead of
and behind the shock and the approach of the gasdynamic quantities to the initial (as X — —) and final (as X — +)
values. Thus, setting in (5) the derivatives of the velocities equal to zero (dU,/dX = dU,/dX = 0), it is easy to find the
velocity boundary conditions
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These values correspond to the usual relations on a discontinuity. If the particle quantity is small (E; — ),
after resolving the ambiguity in (6) we obtain U = E;, which corresponds to the case of pure gas. We see from (6) that
the shock intensity increases, other conditions being the same, with increase of the particle mass, specifically,
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System (5) was solved numerically for the case of a water-air medium (fog) under the assumption that breakup of
the droplets and phase transformations do not occur, i.e., the water particles are equivalent to solid bodies. The
flow parameters ahead of the shock were

p° = 9.81-100N/m’, T =303 K, 0 =16-100m’jsec, M =11
p1° = p,°,  Ei° = E,° = 0.598,  E;° ~ 0.662-107%

We see that the mass relationships for the gas and the particles were assumed to be the same. Evaluation of the
ratios of the fictitious and actual gas densities yields

P1

1
= ~0.999
P~ 4Pulpy 0.99

i.e., the densities are interchangeable to within 0.001.
In solving (5) the particle sizes were taken to be
r=107%, 1077, 1078, 107® ([r] — m)
For the sake of generality we included the case of a shock in the pure gas with the same initial values.
The relation for cx was taken from [6]:
¢x = J(R) (8)

The Reynolds number is based on the relative velocity:
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If for low Reynolds numbers we replace cx by its approximate expression

cx=24/R (109

then (5) will describe the case of Stokes interaction between the medium and the particles:
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We note that this solution is basically qualitative since the application of the usual laws to the process of flow
past very small particles is not rigorously justified.

For the case of a compression shock in pure air it is easy to obtain an analytic solution which can be used for
comparison with the numerical results:
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The calculated data for the two-phase medium are shown graphically in Figs. 1 and 2.
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Fig. 1

Figure 1 gives an idea of the qualitative aspect of the process, while Fig. 2 shows the variation of the intensity
of the process in the gaseous phase as a function of the particle size (points 1, 2,3, and 4 indicate, respectively, the
computational results for particleswith r = 107°m, 107 m, 107" m, 10" m; 5 (-) corresponds to the case of a
compression shock in a pure gas).
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We see that for comparatively large particles the process breaks down into two segments which are of different
orders of magnitude.

Within the limits of the first segment the particle velocity remains practically constant, while in the gas there
is a marked velocity change, corresponding in intensity and gradient to the case of a shock in a pure gas.

In the second segment the gas and particle parameters reach their final values in a significantly retarded
process. However, we note that on the whole the disturbance region remains small for the case of small particles,
With reduction of the particle radius the nature of the shock changes so that the process for both phases becomes of
the same order with regard to intensity with a general increase of the velocity gradient. It is obvious that the
isothermal model of the compression shock in a viscous gas is thermodynamically quite approximate and therefore
must be considered a first approximation, as, for example, in [7].

In our study we examined the isentropic shock as the second approximation. This compression shock model is
qualitatively better since in the series expansion the Poisson adiabat coincides with the Hugoniot shock adiabat to within
the third-order term [4, 5]. However, since the intermediate states in the case of strong compression shocks are not
described by the equation of the adiabats mentioned above, to obtain more accurate results in these cases we must use

the energy-balance equation.

The results of the calculation of the isentropic shock with the previous initial conditions are shown in Fig. 3,
where points 1 correspond to the case r = 1078 m, points 2 are for the case r = 10”7 m, and points 3 are for the case
of a shock in the pure gas.
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The viscosity-temperature dependence was taken as
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We see from Fig. 3 that with regard to the nature of the variation of the phase velocities this case does not
represent any qualitatively new phenomenon and does not differ markedly from the isothermal case with respect to the
order of the gagdynamic quantities.

In general, if in some process the gas parameters vary in accordance with the Poisson adiabat with exponent k,
then the parameters of the two-phase medium vary polytropically with some exponent n, defined in p, v variables as

(14)
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For the medium in question without phase transformation and heat transfer between the phases, the polytropic
exponent can be obtained easily in the form :
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With account for heat transfer the expression for the polytropic exponent changes:
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Thus, if the medium in question is taken to be some hypothetical gas with averaged parameters and if we write
the usual relations on the shock, we obtain easily the expression for the shock adiabat in this case:
_ [ +k@k/n—1)]p/o°—(k—1) (17)
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In the case without heat transfer between the phases the exponent n differs very little from k (in our example
%k = 1.0011), i.e., from the viewpoint of the states at += the two-phase medium behaves like a "heavy" gas with
adiabatic exponent approximately equal to k.

In this sense the particles, just as in the isothermal case, increase the shock intensity. If heat transfer
between the phases is taken into account, the exponent n may differ markedly from k. In this case the process is
complicated by thermal relaxation, which intensifies the shock. In this sense the isothermal shock may be considered
as the limiting case in which the gas is ideally thermally conductive and the particles are a thermostat.

Returning to the question of the possibility of describing unsteady processes in a two-phase medium with the aid
of the steady-state equations, we note the following,

) We see from Figs. 1 and 3 that in the case of sufficiently small particles the scale of the process in the gas can
be the scale for the medium as a whole, so that steady-state theory is applicable without any limitation.

In the cage of larger particles these scales do not coincide. The order of magnitude of the relaxation zone in the
simplest case can be evaluated by solving the equation of motion of an individual particle suspended in a gas stream
traveling with velocity u (for Stokes interaction):

R® Poi dUs _ 1—T, (18)

Equation (18) is integrated for U = const and with the following boundary condition: X = 0, U, = 0. We obtain

Us4-1In(1 —Us) (19)

X=— "7’ (5T p5)

Setting U, ~ 0.667 (of order 1 — e~! according to relaxation theory), it is easy to obtain the value of AX, which
can be called the relaxation region:
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AX = 0.0481R°p,; / p1; (20)

Thus the method of stationary processes in a two-phase medium can be used to study only those unsteady
processes in which the variation of the macroscopic parameters takes place in regions significantly longer than AX.
In this case, in caleulating R® we must take as the characteristic velocity the magnitude of the velocity jump in the
shock wave. :

In the present paper we have studied that particular case of a shock in which the state ahead of the shock is in
thermal equilibrium and the phase velocities are the same. In the general case the qualitative picture may be
considerably more complex.
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